
Threads and GC Implementation in Clozure CL

R. Matthew Emerson
Clozure Associates
rme@clozure.com

1. Introduction
Clozure CL (formerly OpenMCL) provides native threads
and a precise, compacting, generational GC on all the plat-
forms it supports.

Native threads are scheduled by the operating system,
and are therefore subject to pre-emption at any instruction
boundary. Because other threads can allocate memory, this
means that a GC can happen at any instruction boundary.

We present some implementation techniques used in the
32-bit x86 port of Clozure CL to deal with this constraint.

2. Register Management
A precise GC believes that it always knows whether a regis-
ter or stack location contains a Lisp object or just raw bits.
We have no reliable way to tell the difference by simply
looking at a value, so we adopt a convention: we partition
the processor’s registers into (at least) two sets: “immedi-
ates” (which always contain raw bits) and “nodes” (which
always contain Lisp objects). This convention must not be
violated, not even for a single instruction. (The GC is guar-
anteed to run at the most inopportune times.)

There are a few special operations, like consing, that are
not atomic. For example, during the consing instruction se-
quence, there are several states of partial object initializa-
tion. There is special runtime support that recognizes when
a thread has been interrupted in the middle of one of these
pseudo-atomic operations, and performs any necessary PC-
lusering.

On the PowerPC (32 registers) and x86-64 (16 registers),
a static partitioning is feasible. On the 32-bit x86, we have
only 8 registers, so we augment this static partitioning with a
dynamic scheme: we associate a bit in thread-private mem-
ory with each register. If the bit is set, the GC treats the cor-
responding register as a node; if the bit is clear, the register
is treated as an immediate.

As an additional option, we use the direction flag (DF)
in the EFLAGS register to indicate the status of the EDX
register. Clozure CL does not employ the x86 string instruc-
tions, so this flag is otherwise unused. If DF is set, EDX is
treated as an immediate register, and a node otherwise (1).
The thought is that manipulating this bit might be faster than
accessing memory. Measurements have not yet been made
to confirm or deny this notion.

This dynamic scheme seems to work reasonably well.
Most operations can use the default partitioning. When the
partitioning must be changed (typically to get another imme-
diate register), the cost of doing so seems to be affordable in
a larger context: the 32-bit x86 Lisp compiles itself in about
the same amount of time as the x86-64 Lisp requires.

3. Stack Management
Like the registers, the Lisp stack also has to be in a GC-
consistent state at all times. For instance, we are unable
to say something like (subl ($ 48) (% esp)) to reserve
space on the stack for, e.g., outgoing parameters. We must
use the (atomic) push and pop instructions.

Another problem is the x86 CALL instruction: it automat-
ically pushes a potentially arbitrarily-tagged return address
onto the stack. Our solution to this is to give return addresses
their own tag, and arrange for the CALL instructions to be
aligned such that the return address will be tagged appropri-
ately (possibly padding with no-op instructions before emit-
ting the CALL).

In addition to keeping the GC from getting confused,
these tagged return addresses act as a kind of indirect ref-
erence to their containing function.

4. Last Words
These issues are really only of concern to someone working
on the compiler or the runtime of Clozure CL. The Lisp pro-
grammer does not need to take any special care to maintain
GC safety in the presence of pre-emptive threads.

References
[1] Fjeld, Frode Vatvedt. Usenet article with Message-ID

<2hveh7y3ip.fsf@vserver.cs.uit.no> in comp.lang.lisp, March
2007.


